BACKGROUND INFORMATION

- This experiment is conducted to exemplify how plants; specifically the Arabidopsis thaliana are to apt to survive in a human contaminated environment
- High soluble salt levels in the soil can cause plant drought stress.
- These chemicals contaminate the soil producing a high concentrate salt level making it hard for plants to survive.
- The percent survival and shoot height can show the changes and differences between all types of Arabidopsis thaliana

PURPOSE AND HYPOTHESIS

- This experiment is testing how different salt concentrations affect the percent survival and shoot height of Arabidopsis thaliana.
- Our predictions are that none of the plants will survive high concentrate salt level.
- The Landsberg erecta and the Colombia will germinate but not last long, but the mutant will not germinate at all.
- Lastly, all three plants will germinate and thrive in the no salt concentrate level.

PROCEDURE

- Cold treat the seeds to begin germination.
- Water seeds with normal water to start growth
- Once the seeds have germinated, begin to water each environment with the correct water (high salt, low salt, control)
- Observe and record height and survival rates

Salt mixtures

Grams of salt formula

Mass (g) = Concentration (mM) * Volume (mL) * Formula Weight (g/mol)

THANK YOU

Special thanks our scientist, Julie Ann Herman, who helped contribute to our experiment.

Calculated

- Percent survival rate (per day)
- ANOVA test
- Control (No Salt Added)
- Large average heights
- 100% or more survival rate Low Salt
- Decrease in average heights
- Decrease in survival rate High Salt
- survival rates
- Mutant died out <u>Overall</u>
- survived the best P-Value Percentage Columbia: -1.5E-5% Landsberg: -7.4E-10% Mutant: -2.3E-3%

Shoot Height of Arabidopsis Strains after Growing in Saline Solutions

- Mutant Low Salt — Columbia Low
- Salt
- Landsberg Low Salt
- ----- Mutant High Salt ---- Columbia High
- Salt - Landsberg High Salt
- Mutant Control
- Columbia Control
- Landsberg Control

BIBLIOGRAPHY

-"Arabidopsis: The Model Plant." Bio0202-Members of the Multinational Arabidopsis Steering Committee. N.p., n.d. Web. 13 Oct. 2016

-Jiang, Keni, Jacob Moe-Lange, Lauriane Hennet, and Lewis J. Feldman. "Salt Stress Affects the Redox Status of Arabidopsis Root Meristems." Frontiers in Plant Science. Frontiers Media S.A., 2016. Web. 13 Oct. 2016.

-Trachootham, Dunyaporn, Weigin Lu, Marcia A. Ogasawara, Nilsa Rivera-Del Valle, and Peng Huang. "Redox Regulation of Cell Survival." Antioxidants & Redox Signaling. Mary Ann Liebert, Inc., Aug. 2008. Web. 13 Oct. 2016.

Control Experiment with No Salt Added

Low Salt Concentrate Experiment with 150 millimolar of Salt

High Salt Concentrate Experiment with 300 millimolar of Salt

